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Abstract. Learning-enhanced relevance feedback is one of
the most promising and active research directions in content-
based image retrieval in recent years. However, the existing
approaches either require prior knowledge of the data or con-
verge slowly and are thus not coneffective. Motivated by the
successful history of optimal adaptive filters, we present a new
approach to interactive image retrieval based on an adaptive
tree similarity model to solve these difficulties. The proposed
tree model is a hierarchical nonlinear Boolean representation
of a user query concept. Each path of the tree is a cluster-
ing pattern of the feedback samples, which is small enough
and local in the feature space that it can be approximated by
a linear model nicely. Because of the linearity, the parame-
ters of the similartiy model are better learned by the optimal
adaptive filter, which does not require any prior knowledge
of the data and supports incremental learning with a fast con-
vergence rate. The proposed approach is simple to implement
and achieves better performance than most approaches. To il-
lustrate the performance of the proposed approach, extensive
experiments have been carried out on a large heterogeneous
image collection with 17,000 images, which render promising
results on a wide variety of queries.

Key words: Content-based image retrieval (CBIR) – Adap-
tive filter – Linear similartiy model – Tree similarity model

1 Introduction

In the past decade, both technology push (e.g., multimedia
data analysis and machine learning [5,20,24,27,29,34,36])
and application pull (e.g., various digital library [3,8]) have
contributed to the proliferation of image retrieval techniques
[7,25,29]. However, even after years of extensive research,
helping users find their desired images accurately and quickly
is still an open problem.

� An early version of part of the system was reported in Proceed-
ings of the IEEE International Conference on Computer Vision and
Pattern Recognition 2001.

In the early years of content-based image retrieval (CBIR),
most researchers devoted their efforts to finding the best visual
features or the best similarity measure [11,12,15,17,18,32].
However, because of the complexity and subjectivity of the
visual content, no single feature can discriminate all images,
nor can a single similarity measure meet every user’s need.
On the other hand, according to recent user study results [23],
what average users really want are the systems that support
queries based on high-level concepts (e.g., red apples on a
brown table), not low-level features (e.g., 30% red color with
50% brown color). Mapping from the low-level visual features
to high-level concepts dynamically has emerged as the focus
of CBIR [25].

Because each user may interpret an image differently, it is
necessary and effective to have the user in the retrieval loop
in order to discover the user’s query concept, which is impor-
tant for dynamically constructing better mappings between
low-level visual features and high-level concepts [39]. For ex-
ample, given a query image with a person standing in a sun-
set scene, it would be difficult for the CBIR system to guess
whether the user’s query is to search the person or the sunset
scene. Only after the user gives a few relevant and/or irrelevant
images will the system know what the user really wishes to
query. Motivated by this observation, several teams have intro-
duced relevance feedback into CBIR systems to adapt image
features and similarity measures to best reflect high-level con-
cepts based on samples provided by users. Relevance feedback
was first developed in the text-based information retrieval (IR)
research community [27], which has been gaining consider-
able momentum for CBIR in recent years [25].

Relevance feedback techniques are based on different
learning mechanisms and similarity models. Among various
proposed feedback approaches, suggested ones include the
probabilistic Bayesian approach [2,4,22,34], the transductive
learning approach (e.g., discriminate EM) [38], the boosting
approach [31], the kernel approximation approach (e.g., sup-
port vector machines) [30,32,39], and the optimization learn-
ing (OPL) approach [24]. While the various approaches have
improved the performance of CBIR, many of them suffer from
one or more of the following limitations:
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• The learning process has its best strength only if prior
knowledge about the data distribution or a large training
set is available [4,22,30,34,38].

• If users do not give sufficient feedback samples during the
retrieval process, only a suboptimal solution of the similar-
ity model can be achieved for the parameter estimation by
the minimum mean square error (MMSE) criterion [24].

• The convergence to the optimal solution of the similarity
model is slow and the computation cost is high [9,22,38].

• While the linear similarity model proves easy to implement
and fast in computation [26], it is not sufficient to model
the nonlinearity of human vision perception.

All the above limitations prevent the existing approaches from
being fully deployed in practical systems. In this paper, we pro-
pose a novel relevance feedback technique based on adaptive
filtering and a Boolean tree similarity model. Adaptive filters
have been successfully used for more than four decades in
various research areas including signal processing, automatic
control, and system identification [27]. The adaptive filters are
rooted in the optimal estimation theory, whose input X(n) and
output error e(n) drive it to automatically adapt to the MMSE
solution of the estimated model’s parameters efficiently with-
out any prior knowledge about data distribution. Considering
the human vision system as an intelligent signal filter (a black
box with input of image feature and output of similarity), it
is possible to use the optimal adaptive filter to better adap-
tively estimate the parameters of the visual similarity model.
By doing so, we can apply the least mean square (LMS) and
recursive least square (RLS) adaptive filter algorithms to solve
the learning problem in a theoretical way. They result in simple
implementation, fast convergence rate, and good performance.

The conventional adaptive filter assumes that the unknown
visual perception system is a linear similarity model. The sim-
ilarity model for human vision perception, however, is a com-
plex nonlinear system [11]. Furthermore, we extend the con-
ventional adaptive filter to a nonlinear tree similarity model.
The proposed tree similarity model is a hierarchical represen-
tation of clustering patterns of all feedback samples. It decom-
poses a user’s complex query concept into a Boolean combi-
nation of multiple simpler subconcepts. Each pattern of many
possible subconcepts defines a path leading from the tree root
node to a leaf node. All the subconcepts are then combined
using Boolean algebra to yield the overall query concept of
the user. The benefits of using this proposed tree model are:

• Compared with the overall query concept, each path of the
tree spans smaller feature subspace and therefore can be
well approximated as a linear model on which the optimal
adaptive filter can be better implemented.

• Because the overall query is modeled as a nonlinear
Boolean combination of all the subconcepts, it does not
sacrifices the nonlinearity.

• Some image features are suitable for quickly filtering out
irrelevant images at a coarse level, while others are suitable
for fine-tuning the image similarity. The tree model renders
itself to such a coarse-to-fine hierarchical search such that
it improves the retrieval speed.

The remainder of the paper is organized as follows. In Sect. 2,
we first introduce various important concepts and notations of
CBIR before going into the details of the proposed approach.

In Sect. 3, we focus on the optimization learning approach
(OPL) [24] for related work, which is one of the available
advanced approaches. In Sect. 4, we give a detailed descrip-
tion of the proposed adaptive learning approaches based on
optimal adaptive filters. We further discuss how to solve the
learning order issue encountered in CBIR and give computa-
tion complexity comparisons between OPL, LMS, and RLS.
In Sect. 5, we extend adaptive-filtering-based relevance feed-
back techniques from a linear model to a nonlinear adaptive
tree similarity model. Specifically, we show how to train the
CBIR system to adaptively learn the tree similarity model on-
line, calculate the overall similarity from the tree, and effi-
ciently retrieve images based on this model. In Sect. 6, exten-
sive experiments over a large heterogeneous image collection
with 17,000 images are reported to evaluate the retrieval per-
formance of the adaptive tree similarity model. Concluding
remarks are given in Sect. 7.

2 Concepts and notations

Before we consider the details of the paper, it would be ben-
eficial to first introduce and define some important concepts
and notations that will be used in the paper.

Let I be the number of features we are studying and M

the total number of images in the database. We use �Fmi =
[fmi1, fmi2, . . . , fmiKi ]

T to denote the i-th feature vector of
the m-th image, m = 1, 2, . . . , M , where Ki is the dimension
of the i-th feature vector. For example, for a six-element color
moment feature vector, Ki = 6.

Let �Fqi = [fqi1, fqi2, . . . , fqiKi
]T denote the i-th feature

vector of the query image q. We further define a difference
vector between image m, m = 1, 2, . . . , M , and the query
image q as:

→
Xi(m) = [|fmi1 − fqi1|, . . . , |fmiKi

− fqiKi
| ]T (1)

where |x − y| represents the difference between x and y. Be-
cause different feature elements may have different contribu-
tions to the perception of image content, different weights can
be associated with the feature elements to reflect this effect
[24]. The distance between image m, m = 1, 2, . . . , M and
query q, in terms of the i-th feature, can therefore be calculated
as:

gi(m) =
→
Xi(m)T Wi

�Xi(m), L2 metric norm

gi(m) = �WT
i

�Xi(m), L1 metric norm (2)

depending on if we want to use L1 or L2 distances. For L2

distance, Wi is a weight matrix, while for L1 distance, �Wi is
a weight vector.

After we have discussed how to compute image distances
based on an individual feature, the overall distance d(m) based
on multiple features can be computed in two ways. One way
is to not differentiate the difference among features and stack
all the feature elements (from all the individual features) into
a big overall feature vector to compute d(m). This approach
was used in most of the existing systems. Because this model
has no hierarchy, we refer to it as the “flat model” in this paper.
Another way is to construct a hierarchical model, where the



T. Wang et al.: Adaptive tree similarity learning for image retrieval 133

overall distance d(m) is defined as:

d(m) = U(gi(m)) (3)

where U(.) is a linear function that combines the individual
distances gi(m) to form the overall distance d(m). We will
refer to this model as the “hierarchical model.”

While we have discussed how to compute the distance
between two images, similarity is more commonly used in
CBIR. To convert between distance and similarity, we adopt
the approach proposed in [9]. Assuming the distance d(m),
m = 1, 2, . . . , M obeys the Gaussian distribution ofN(0, σ2),
the similarity π(m) between image m and query image q is
the likelihood of this distribution, with π(m) = 0 being the
least similar and π(m) = 1 being the most similar:

π(m) = exp(−d(m)2

2σ2 ), π(m) ∈ [0, 1]

d(m) =
√

−2σ2 ln(π(m)) (4)

Similarly, we have the following relationships for the i-th
feature:

λi(m) = exp(−gi(m)2

2σ2 ), λi(m) ∈ [0, 1]

gi(m) =
√

−2σ2 ln(λi(m)) (5)

3 Related work

Among the existing approaches
[4,10,13,14,20,22,24,26,30,31,38] introduced in Sect. 1,
we mainly compare the optimal learning (OPL) approach
[23] with our approach, for the following reasons:

• OPL is one of the best techniques available; it formulates
the relevance feedback in a vigorous optimization frame-
work and derives explicit optimal solutions for the weights
in a linear model. Thus it performs better than many other
existing MARS [26] and Mind Reader [10] approaches.

• Unlike many other approaches that are tested only on pre-
selected queries over small data sets, the OPL approach
has been tested with a wide variety of 400 random queries
over a large 17,000 heterogeneous image collection. In this
manner, it obtains an objective evaluation of the various
retrieval techniques.

The OPL approach can be summarized as follows. Let N be the
number of feedback images (training samples), and let π(n) be
the degree of relevance for training sample n, n = 1, . . . , N
given by the user. The overall distance between a training
sample and a query is defined as:

d(n) =
I∑

i=1

uigi(n)

gi(n) = �XT
i (n)Wi

�Xi(n) (6)

where Wi is the low-level (interfeature) weights and ui is the
high-level (intrafeature) weights. The OPL approach derives

the optimal query vector �Fqi and optimal weights by using the
Lagrange multipliers [24]:

�Fqi =
∑N

n=1 π(n)�Fni∑N
n=1 π(n)

Wi =
{

(det(Ci))1/KiC−1
i , det(Ci) �= 0

diag(1/σ2
1 , 1/σ2

2 , . . . 1/σ2
Ki

), otherwise (7)

ui =
I∑

j=1

√√√√ N∑
n=1

π(n)gj(n)/
N∑

n=1

π(n)gi(n)

The term Ci is the weighted Ki-by-Ki covariance matrix
of the i-th feature vector of the feedback samples.

Ci =
∑N

n=1 π(n)( �Xi(n) �XT
i (n))∑N

n=1 π(n)

When computing Wi, the OPL approach switches between a
full matrix and a diagonal matrix depending on the relationship
between the number of feedback samples N and the length of
the feature vector Ki. When N>Ki, the OPL uses the full ma-
trix form to take advantage of large feedback samples. When
N < Ki, the OPL uses the diagonal matrix to avoid noisy
parameter estimation. The OPL approach has many advan-
tages over other existing approaches, including MARS [26]
and Mindreader [10]. However, it still has the following diffi-
culties:

• Calculating det(Ci) and C−1
i is quite expensive, i.e., re-

quires O(
∑I

i (Ki)3) operations, which is not desirable for
practical image retrieval applications;

• When the number of feedback samples N is small, e.g.,
N < Ki, the weights Wi reduce from a full matrix to a
diagonal matrix, which results in suboptimal solutions for
the parameter estimation of the similarity model.

• OPL is a batch learning approach, which requires that all
samples be given simultaneously before it can learn. When
an additional feedback example is presented, there is no
easy way to incrementally incorporate the new example
without recomputing the weights.

• More importantly, OPL uses a linear similarity model to
combine multiple feature similarities with the overall simi-
larity, which is too restrictive and not sufficient in modeling
human vision perception.

The next two sections try to resolve the above difficulties.
In Sect. 4, we propose an adaptive-filter-based learning ap-
proach. It converges quickly to current optimal feature weights
for a linear similarity model and avoids expensive computa-
tion by using a recursive incremental learning paradigm. In
Sect. 5, we propose an adaptive tree similarity model to deal
with the linear limitation in OPL. The adaptive filter performs
better in the adaptive tree model because the divided feature
subspace is approximated better as a linear model in each path
of the tree.

4 Learning with adaptive filters

The human vision system can be considered as a black box
(see Fig. 1). For query image q and feedback image n,
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Fig. 1. Adaptive-filter-based feedback model

n = 1, 2, . . . , N , the input to the filter is the difference feature
vector �X(n), and the output from the filter is the similarity
distance d(n). Although we do not know the human vision
system’s response function to �X(n), it is possible for us to
construct an adaptive filter to estimate it according to user
feedback. Let the input to the adaptive filter be the same as the
input to the human vision system, i.e., �X(n) and the output of
the adaptive filter be y(n). By comparing y(n) against d(n),
we can obtain an error signal e(n), which can then be used to
drive the adaptive filter to adjust model parameters in order to
better simulate the human vision system’s response function
(see Fig. 1). In this section, we first give the optimal Wiener
solution and then develop two relevance feedback techniques
based on LMS and RLS. We further discuss how to solve the
learning order issues encountered in CBIR and give computa-
tion complexity comparisons between OPL, LMS, and RLS.

4.1 Optimal Wiener filter

Assuming a linear system d(n) = �WT �X(n) and given a wide-
sense stationary (WSS) input signal �X(n), output signal y(n),
and desired output signal d(n), the Wiener filter is the optimal
stochastic filter that minimizes the variance of the error [27]:

min
W

E[e2] = E[(d(n) − �WT (n) �X(n))2]

= E[d(n)2] − 2�PT �W + �WT Rxx
�W (8)

where �W = [w(0), w(1), . . . , w(K − 1)]T is the filter coeffi-
cient, K is the length of the Wiener filter and

Rxx = E[ �X(n) �XT (n)], �P = E[d(n) �X(n)] (9)

The gradient of E[e2] with respect to the filter coefficient is

∇ = ∂(E[e2])/∂ �W = −2�P + 2Rxx
�W (10)

By setting the gradient to zero, we arrive at the optimal Wiener
solution:

�W = R−1
xx

�P (11)

This solution is great in theory, but in reality we do not know
the statistics Rxx and P of the signals a priori. Fortunately, we
can estimate the statistics on the fly while we are computing
the optimal solution. Two techniques are LMS and RLS, with
LMS approximating the steepest gradient descent and RLS
approximating Rxx and P directly.

4.2 Least mean square solution (LMS)

Because we do not know Rxx and P in advance, the gradient
descent approach can be used to solve the nonlinear optimiza-
tion problem min

W
E[e2]. At each iteration we compute the

gradient and move the solution toward the steepest gradient
descent direction, i.e.:

∇(n) = ∂E(e2)/∂ �W (n)] = −2e(n) �X(n) (12)
�W (n+1) = �W (n) − µ∇(n) (13)

where µ is the step size and n is the iteration index. The LMS
algorithm was developed four decades ago by Widrow and
Hoff [36]. Today it is still widely used because of its simplicity,
low computation demands, and great performance [27]. Next
we give a complete LMS algorithm developed for relevance
feedback in CBIR.

[Procedure 1: LMS relevance feedback algorithm]

(A) Initialization:
Choose step size 0 < µ < 2 and set filter coefficients to

�W (0) = [1/K, 1/K, . . . , 1/K] (14)

(B) For each n = 1, 2, . . . , N :
(a) Compute the distance y(n) based on the current

weights

y(n) = �WT (n) �X(n) (15)

(b) Compute the error signal

e(n) = d(n) − y(n) (16)

Note that compared with standard Wiener filters, we
have an extra step to convert from the similarity to
distance d(n).

(c) Compute the updated weights

�W (n)

= �W (n − 1) +
µ

a + �XT (n) �X(n)
�X(n)e(n) (17)

where a is a small positive constant to avoid denomi-
nator being 0.

The LMS-based relevance feedback algorithm is elegant
in theory, easy to Implement, and requires very little compu-
tation.

4.3 Recursive least square algorithm (RLS)

Instead of approximating the gradient, RLS attempts to ap-
proximate the Rxx and P directly. It uses the famous matrix
inverse equation [27]

A = B−1 + CF−1CT ⇒ A−1

= B − BC(F + CT BC)−1CT B

to simplify the computation of R−1
xx . For a detailed derivation

of the RLS algorithm, please refer to Appendix A. Compared
with LMS, RLS has the following features:
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• Because LMS uses the noisy gradient to approximate the
true gradient, it converges fast at initial steps and gradually
slows down and even oscillates when approaching the final
solution. RLS, on the other hand, estimates Rxx and P
directly at each iteration, thus resulting in faster overall
convergence.

• However, RLS’s faster convergence speed is at the cost
of more computation. In addition, when training samples
are not more sufficient than the dimension of the feature
vector, estimating Rxx and P can be problematic. This
may actually result in a slower convergence than LMS in
practice.

A detailed comparison between LMS and RLS is given in
Sect. 6. We next give the complete RLS algorithm developed
for relevance feedback in CBIR.

[Procedure 2: RLS relevance feedback algorithm]

(A) Initialization:

�W (0) = [1/K, 1/K, . . . , 1/K], Q(0) = δ−1I (18)

where Q is the inverse of the signal covariance matrix Rxx

and δ is a small positive constant.
(B) For each n = 1, 2, . . . , N :

1. Compute the distancey(n)based on the current weights

y(n) = �WT (n) �X(n) (19)

2. Compute the error signal:

e(n) = d(n) − y(n) (20)

3. Compute the gain vector:

�K(n) =
Q(n − 1) �X(n)

1/π(n) + �XT (n)Q(n − 1) �X(n)
(21)

4. Compute the updated weights:

�W (n) = �W (n − 1) + �K(n)e(n) (22)

5. Compute the inverse correlation matrix:

Q(n) = Q(n − 1) − �K(n) �X(n)Q(n − 1) (23)

4.4 Learning orders for adaptive filters in CBIR

In the original adaptive filters, signals �X(n) and d(n) arrive in
a sequential order, while in CBIR there is no explicit order for
feedback samples. The two most obvious approaches we can
take for this ordering issue are the forward ordering approach
and the backward ordering approach. Let set S contain the
N feedback samples in order of decreasing similarity to the
query image. That is, the first image in the set has the greatest
similarity to the query image and the last image in the set has
the least similarity to the query image. The forward approach
is to learn the feedback samples from the first to the last, and
the backward approach is to learn the samples from the last to

the first. Because both LMS and RLS are incremental learn-
ing algorithms, we expect the backward approach to be more
advantageous: its learning samples are organized in a coarse-
to-fine fashion. Just like the hierarchical pyramid approach
in optical flow computation [1], the backward approach sim-
ulates a hierarchical algorithm to avoid local minimum and
to speed up convergence. It saves the “best” example at the
last to fine-tune the parameters. We will provide a detailed
comparison of the forward and backward learning orders in
Sect. 6.1.

4.5 Computation complexity

Given the high computation cost involved in most of today’s
relevance feedback techniques [10,38], one of our motivations
in developing the adaptive-filter-based approach is its effi-
ciency. The OPL approach is already one of the most efficient
relevance feedback approaches available, but it still requires
O(K3 + 2NK2) computations to learn the weights of each
item in a K dimension feature vector [23]. If we examine
the LMS and RLS algorithms, they only need, respectively,
O(NK) and O(NK2) computations to learn the weights of
each item in a K dimension feature vector [27]. As we dis-
cussed in Sect. 4.2, LMS is extremely efficient, which means
it is linear in both the number of feedback samples N and
the feature vector dimension K. Furthermore, unlike OPL,
which is a batch learning algorithm, both LMS and RLS are
incremental recursive learning algorithms. That is, when the
n-th feedback example becomes available, they can learn it
incrementally from example n − 1, without reexecuting the
whole algorithm. To illustrate the difference in their computa-
tion complexity, let us plug in some real-world numbers with
K = 18, N = 20. The LMS, RLS, and OPL require 360,
6480, and 18,792 computations, respectively. Both LMS and
RLS are more efficient than OPL. It is worth mentioning that
LMS is exceptionally efficient; its computation count is an
order of magnitude less than RLS’s.

5 Tree similarity model

The previous section discussed how the adaptive filters learn
the low-level weights Wi in a linear model that is not powerful
enough to model the nonlinearity of human visual cognition.
Many experiments, e.g., Jain et. al., have shown that the sim-
ilarity model in human vision is a complex nonlinear model
[11]. Furthermore, Krumhansl has proposed a distance density
model of similarity in which similarity is assumed to be a func-
tion of both the feature difference and the feature density of the
feature space [12]. However, because we know little about the
density distribution of the feature space and the property of the
similarity model due to a limited number of training samples,
accurate similarity measures are usually difficult to achieve
in reality. Fortunately, we can adopt a “divide-and-conquer”
approach whereby a complex nonlinear feature space can be
divided into simpler, meaningful, and linear similarity mod-
els around the interested clusters in the feature subspace. For
example, in Fig. 2, there are three clusters A1, A2, A3 of class
A and two clusters, B1, B2, of class B, and Ā is the averaged
point of all points of class A. If we use the averaged point Ā to
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Fig. 2. Many clustering sets for two classes

retrieve all points of class A in a linear model, we will misclas-
sify some points of B to class A when Ā is near class B. So a
linear model cannot approximate well the complex nonlinear
visual similarity model. Our solution is to divide the nonlin-
ear feature space into a few approximated linear subspaces A1,
A2, A3 for class A and B1, B2 for class B by clustering these
points in the feature space. The adaptive filter therefore can
learn better because it assumes the similarity model is linear
only in the subspaces A1, A2, A3.

The hierarchical model is widely used to improve the ef-
ficiency and precision in pattern recognition [1,16] because
it naturally simulates the coarse-to-fine processing. By using
a suitable threshold, irrelevant images can be quickly filtered
out at top levels and only possible relevant images will be
examined at all levels. Another advantage of the hierarchi-
cal method is that it avoids the curse of dimensionality (too
many features will make the performance worse [33]). If we
test more important features earlier in the hierarchy and less
important features at a later stage and give different weights
to these features, we can avoid the curse of dimensionality to
some extent.

The relevance feedback decision tree is broadly used in
pattern recognition due to its efficient hierarchical property.
It is used for CBIR in [19], which classifies all images into
relevant and irrelevant images. Then the similarity is calcu-
lated by executing an unweighted K nearest neighbor retrieval
on the list. Motivated by the above observations, in our pa-
per, we propose a novel tree similarity model for CBIR (see
Fig. 3). Unlike the method in [19], the proposed adaptive tree
similarity model is a hierarchical Boolean representation of
clustering patterns of all feedback samples (relevant and irrel-
evant). Because the feature subspace near each path is so small
that it can be approximated as a linear model, the adaptive fil-
ter is integrated to adapt the feature weights in the tree path.
In this section, we will first give a detailed description of how
to build and train a tree similarity model. Then we develop a
similarity measure algorithm for the adaptive tree similarity
model and discuss how to optimize the model’s performance.

5.1 Building the tree similarity model

The proposed tree similarity model is a hierarchical repre-
sentation of clustering patterns of all feedback samples. The
sequence of levels from top to bottom is the order of test fea-
tures. Except for the root level and leaf level of the tree, every
level corresponds to one feature test. Therefore, there are I+2
levels in the tree model if a CBIR system uses I features. Ev-
ery node at the same level i is a possible clustering pattern of
the corresponding tested i-th feature. Any path from the root
to a leaf node is one of the patterns of a user’s query con-
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cept. Thus all discovered clustering patterns of the feedback
samples are represented by paths of the tree after the model
has learned a user’s feedback. For example, in Fig. 3, Cir de-
notes the r-th clustering of the i-th feature. At the leaf node,
Aj is a clustering label to denote the j-th pattern of class A.
Similarly, leaf nodes A1, A2, A3, A4, A5 are the discovered
patterns of class A, and B1, B2 are patterns of class B. The
path root→ C11 → C21 → C32 → A2 is a pattern A2 of
relevant images of class A.

The tree forms a Boolean model. The relationship between
paths is “OR,” denoted as ∨, for positive samples, or “NOT,”
denoted as ¬, for negative samples. The relationship between
all the nodes in a path is “AND,” denoted as ∧. The subspace
near paths is so small and local that it can be successfully
approximated to a linear similarity model. When a user gives
feedback samples, the adaptive filtering discussed in Sect. 4
is used to adaptively learn the weights of the linear model in
its corresponding path.

The structure of the Boolean model is illustrated in Fig. 4.
First, it calculates the similarity λi(n) of each individual fea-
ture by Eq. 5, i = 1, 2, . . . , I . It then uses the Boolean combi-
nation to obtain the overall similarity π∗(n) between the query
image and the n-th image.

π∗(n) = ∨
j
(πj(n)) =

{
max

j
(πj(n)), j ∈ SR

0, j ∈ SN

πj(n) = ∧
i
(gi(n)) =

I∑
i=1

uiλi(n) (24)

where W = [ �W1, �W2, . . . , �WI ] is the intrafeature (low-level)
weights and U = [u1, u2, . . . , uI ] is the interfeature (high-
level) weights, SR is the pattern set of the relevant images and
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SN is the pattern set of irrelevant images given by a user. Here
we use max() to model the “OR” operation and weighted sum-
mation to model the “AND” operation. If an image is similar
to any pattern in the irrelevant set SN , its similarity is zero.
We use j to indicate a particular path in the tree.

The tree model uses the hierarchical (tree) adaptive filter
to learn the interfeature weights and intrafeature weights si-
multaneously, which is proven to have fast convergence and
low computation [37]. Furthermore, the tree model is an incre-
mental learning algorithm, which can be updated recursively
by adding new paths by or adjusting the feature weights and
the center of each cluster when a new sample arrives. We then
give a complete algorithm to build and train the tree model
from user feedback. The algorithm can learn both intrafeature
weights W and interfeature weights U adaptively and update
the structure of the tree model recursively after a new sample
arrives (see procedures 3 and 4).

5.2 Similarity computation by tree model

After training the tree similarity model by user feedback sam-
ples, the total similarity can be calculated using Eq. 24. The
whole process is aimed at finding a path with maximum sim-
ilarity to the query image. If there is no matched path or there
is a path belonging to a negative sample, the total similarity is
zero. If an image is filtered out by the feature test at a particu-
lar level in the path, it exits and keeps the current value as the
total similarity. Otherwise, the total similarity is the weighted
average of all similarities in each node of the path (see proce-
dure 5). For example, if a user inputs only red cars as relevant
feedbacks, the adaptive tree model will cluster these red-car
images as query samples and think the user’s query concept
is the car with red color. On the contrary, if a user gives red
cars, blue cars, yellow cars, etc. as relevant feedbacks, the tree
model can adaptively learn that the user’s query concept is
the car and that the color feature is not important and retrieve
many cars with different colors that are similar to any of these
clustering feedback images.

5.3 Optimization of the tree similarity model

The proposed tree model is hierarchical. Selecting the order
of the tested features is therefore important. The order from
coarse to fine is robust and efficient for human vision. A good
way to determine which feature is “coarse” and which is “fine”
is given according to the information entropy.

Letp(i|E)be the probability that a cluster drawn at random
from a set E belongs to class i. Then the entropy or uncertainty
of the set E is:

H(E) = −
∑

i

p(i|E) log P (i|E) (25)

If we perform a feature test T and have k possible outcomes
on the patterns in E, we will create k subsets, E1, E2, . . . , Ek.
The uncertainty about outcome Ej would be:

H(Ej) = −
∑

i

P (i|Ej) log P (i|Ej) (26)

[Procedure 3: Train similarity tree algorithm]
Input: A feedback image and the existing tree model
Output: The updated tree model

1. Set CurrentNode = root, TotalSim = 0, and the node level i to
1.

2. If all the I features have been learned, then go to step 3.
(a) Call clustering procedure 4 to obtain clustering center Cir

with maximum similarity MaxSim to the image’s i-th fea-
ture.

(b) Calculate TotalSim = TotalSim+MaxSim*ui. Here ui is the
interfeature weights of the i-th the feature.

(c) If Cir exists in the children of CurrentNode, then set the
found child as CurrentNode. Go to step (e).

(d) Add Cir as the new child of CurrentNode. Set the new
child as CurrentNode.

(e) Set i = i + 1. Go to step 2 to process next feature.
3. Label leaf node as a positive (relevant) or negative (irrelevant)

clustering pattern.
4. Calculate the total error as: Error = RealSim- TotalSim. Here

RealSim is the similarity of the image derived from user feed-
back.

5. For i = 1, 2, . . . , I , learn the intrafeature weights �Wi by Error
using Cir as the query vector of the i-th feature in the adaptive
filter Filter i.

6. Learn the interfeature weights U = [u1, u2, . . . , uI ] of the fea-
tures by Error in Filter 0 using the adaptive filtering technique
described in Sect. 4.

7. Return the updated tree model.

[Procedure 4: Clustering algorithm for the i-th feature]
Input: An image’s i-th feature and the clustering set Ci

Output: Cluster Cir with maximum similarity to the image’s i-th
feature

1. Calculate the similarity between the image’s i-th feature and
all clusters of the i-th feature by intrafeature weights �Wi and
find the cluster Cir with the maximum similarity MaxSim.

2. If MaxSim of Cir is larger than the given threshold, e.g., 0.8,
go to step 4.

3. Add the image’s i-th feature as the new cluster and set the new
cluster as Cir .

4. Update the center of cluster Cir by the image’s i-th feature.
5. Return the updated Cir and MaxSim.

We can estimate the average uncertainty over all the Ej by

E[HT (E)] =
∑

j

P (Ej)H(Ej) (27)

Then the average reduction in uncertainty entropy achieved
by feature test T is:

RT (E) = H(E) − E[HT (E)] (28)

Select the feature test that gives maximum reduction of uncer-
tainty at the first level and then applies this criterion recursively
until all features have been used.

The tree similarity model can learn not only positive sam-
ples but also negative samples. After learning feedback sam-
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[Procedure 5: Calculate similarity using tree model]
Input: An image and the tree model
Output: Total similarity between them

1. Set CurrentNode = root, TotalSim = 0, and node level i to 1.
2. If all the I features have been tested, go to step 3.

(a) Calculate the similarity between CurrentNode’s children
and the image’s i-th feature by the intrafeature weights �Wi

of the i-th feature vector and find the child node with the
maximum similarity MaxSim as the CurrentNode.

(b) If MaxSim of the CurrentNode is less than a given thresh-
old, e.g., 0.6, go to step 3.

(c) Calculate current TotalSim = TotalSim + MaxSim * ui,
where ui is the interfeature weights of the i-th feature.

(d) Set i = i + 1. Go to step 2.
3. If the label of the leaf node in the traced path is a pattern of an

irrelevant image, then set TotalSim to zero.
4. Return TotalSim.

ples, it can cluster all discovered positive and negative sam-
ples into organized patterns of the tree. Normally, the positive
samples can be just a few patterns for a user’s query in CBIR.
However, there are many patterns of the negative samples. Al-
though it is difficult to acquire enough negative patterns in a
large database by learning a few negative patterns, it can still
improve the performance to some extent because learning a
few negative samples can reject obvious dissimilar images
quickly and can help decide which feature is more important
and discriminating. We will provide a comparison between
learning by only the positive samples and learning by both
positive and negative samples in Sect. 6.6.3.

6 Experiments

In the previous sections, we showed the theoretical advantages
of the proposed adaptive tree similarity model and adaptive
filter, e.g., optimality, incremental learning, low computation
complexity, and ability to model nonlinear Boolean queries. In
this section, we will examine the retrieval performance (e.g.,
accuracy and robustness) via experiments. Specifically, we
would like to answer the following questions:

• Which algorithm performs better, LMS, RLS or the exist-
ing OPL, MARS, Mind Reader approaches?

• Which sequencing order performs better for adaptive fil-
ters, forward or backward and why?

• Which similarity model is better, the linear model or the
tree similarity model?

• Which learning process is better, learning using positive
samples only or using both positive and negative samples?

6.1 Data set

For all the experiments reported in this section, the Corel im-
age collection is used as the test data set. We choose this data
set for the following considerations:

• It is a large-scale data set. Compared with the data sets used
in some systems that contain only a few hundred images,
the Corel data set includes 17,000 images.

• It is heterogeneous. Unlike the data sets used in some sys-
tems that are all texture images or car images, the Corel
data set covers a wide variety of content from animals and
plants to human society and natural scenery.

• It is professionally annotated by Corel professionals. In-
stead of using the less meaningful low-level features like
the evaluation criterion, the Corel data set has human-
annotated ground truth. All the images in their entirety
have been classified into 170 categories, and there are 100
images in each category.

The Corel data sets have been used in other systems in which
relatively high retrieval performance has been reported [15,
17, 32]. However, those systems use only preselected cate-
gories with distinctive visual characteristics (e.g., red cars vs.
green mountains). In our experiments, no preselection is made
in 17,000 images. Since average users want to retrieve images
based on high-level concepts, not low-level visual features [23,
25], the ground truth we use is based on high-level categories
such as car, flower, people, etc. In experiments, in order to ob-
tain an objective evaluation of the various retrieval techniques,
we use the categories to evaluate the retrieval performance. But
in practice, the system is to enable users to guide the system
to the images that are meaningful while not being subjected
to categorization.

6.2 Queries

Some existing systems only test a few preselected query im-
ages. It is not clear if those systems will still perform well
on other nonselected images. To fairly evaluate the retrieval
performance of different methods and similarity models, we
randomly generated 400 queries on all 17,000 images for each
retrieval condition. For all the experiments reported in this sec-
tion, they are the average of all 400 query results.

6.3 Visual features

In our current system, we use three visual features: color mo-
ments, wavelet-based texture, and a water-fill edge feature.
Every feature has been Gauss normalized beforehand due to
different ranges of value. For color moments, we choose to
use the HSV color space because of its similarity to human
vision perception of color [25]. For each of the three color
channels, we extract the first two moments (e.g., mean and
standard deviation) and use them as the color feature.

The second visual feature we use is a recently developed
water-fill edge feature [40]. The original image is first fed
into the Canny edge detector to generate its corresponding
edge map. The edge map is then considered as a network of
tunnels. Virtual water is then poured into the tunnels. By mea-
suring maximum filling time, maximum fork count, etc., this
algorithm captures a total of 18 edge characteristics of the
original image.

For the third wavelet-based texture, the original image is
fed into a Daubechies-4 wavelet filter bank [6] and decom-
posed into the third level, resulting in ten decorrelated sub-
bands. Out of the ten sub-bands, nine are “detailed” bands
capturing the characteristics of the original image at different
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Table 1. Comparison between forward learning (LMS F) and back-
ward learning (LMS B) for LMS in the linear model

Precision
(percentage)

0 itera-
tions

1 iteration 2 iterations

Return LMS F 14.48 16.83 17.50
top 20 LMS B 14.41 18.96 20.41

Return LMS F 6.91 9.94 10.44
top 100 LMS B 7.25 11.87 13.04

Return LMS F 6.18 7.15 9.08
top 180 LMS B 5.73 9.09 9.58

scales and orientations. The last band is the “smoothed” band,
which is a subsampled average image of the original image.
For each subband, we extract the standard deviation of the
wavelet coefficients and therefore have a texture feature vec-
tor of length 10. This wavelet-based feature has been proven to
be quite effective in modeling image texture features [25,26].

It is worth noting that the proposed tree similarity model
framework is an open framework. More advanced features
(e.g., region, semantics, etc. [15,18]) can readily be incorpo-
rated into the system for better performance. Here we wish
to use the above three visual features to achieve better perfor-
mance by the proposed learning approaches than the regular
techniques.

6.4 Performance measures

The most widely used performance measures for information
retrieval are precision (Pr) and recall (Re) [27]. Pr is defined
as the number of retrieved relevant objects (i.e., N) over the
number of total retrieved objects, say the top 20 images. Re
is defined as the number of retrieved relevant objects over the
total number of relevant objects in the image collection (in the
Corel data set case, 99). In general, Pr will decrease when Re
increases. The performance of an “ideal” system should be that
the precision is higher at the same recall value. Because of this,
the Pr(Re) curve is used to better characterize the performance
of a retrieval system.

6.5 System description

We have developed a prototype system based on the pro-
posed adaptive tree similarity model approaches. The system
is written in C++ and runs on the Windows 2000 platform.
Its interface is shown in Fig. 5. Our prototype system has two
modes: demo mode and testing mode. During the demo mode,
a user can browse through the image collection and submit
any image as the query image, which is shown in the top left
corner. For each of the returned images, there is a degree-
of-relevance (i.e., similarity π(n)) slider to allow the user
to provide his/her relevance feedback. During testing mode,
the system randomly selects query images and uses the Corel
high-level category label as the ground truth to obtain rele-
vance feedback. This is a very challenging task, and we report
detailed experimental results in the next section.

Fig. 5. User interface of the retrieval system

Fig. 6. Comparison between forward learning and backward learning
for LMS in the linear similarity model

Fig. 7. Comparison between forward learning and backward learning
for RLS in the linear similarity model

6.6 Results and observations

6.6.1 Forward learning vs. backward learning

When we use LMS or RLS, we use the linear model as de-
scribed in Sect. 2. Table 1 shows the forward/backward learn-
ing results using a single averaged query example for LMS.
When the return top is 20, 100, and 180, most similar images
are retrieved. To better compare the two learning orders, in
Fig. 6 we also plot the precision-recall curve for LMS after
two iterations of feedback. Similarly, Table 2 shows the for-
ward /backward learning results for RLS, and Fig. 7 shows
their precision-recall curves.

Regarding forward learning and backward learning, the
following observations can be made based on the above tables
and figures:
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Fig. 8. Comparison between MR, MS, OPL, RLS, and LMS in the
linear model

Table 2. Comparison between forward learning (RLS F) and back-
ward learning (RLS B) for RLS in the linear model

Precision
(percentage)

0 itera-
tions

1 iteration 2 iterations

Return RLS F 11.18 12.82 15.62
top 20 RLS B 14.95 17.86 19.25

Return RLS F 7.04 9.68 11.83
top 100 RLS B 7.23 10.41 11.07

Return RLS F 5.89 7.55 9.32
top 180 RLS B 5.77 9.15 9.63

Table 3. Comparison between Mr, MS, OPL, RLS, and LMS in the
linear similarity model model

Precision
(percentage)

0 itera-
tions

1 iteration 2 iterations

Return MR 7.23 0.58 0.29
top 20 MS 7.23 10.99 12.09

OPL 10.18 14.18 15.85
RLS B 14.95 17.86 19.25
LMS B 14.41 18.96 20.41

Return MR 4.36 1.02 2.20
top 100 MS 4.36 7.60 8.82

OPL 5.75 9.47 11.60
RLS B 7.23 10.41 11.07
LMS B 7.25 11.87 13.04

Return MR 3.53 1.06 1.77
top 180 MS 3.53 6.00 7.02

OPL 4.63 7.78 9.39
RLS B 5.77 9.15 9.63
LMS B 5.73 9.09 9.58

• For LMS and RLS, the backward learning outperforms the
forward learning because the backward learning order sim-
ulates the “coarse-to-fine” learning process and benefits
the adaptive filtering algorithms to fine-tune the weights
at the last stage.

• The ordering effect is more noticeable in LMS than in RLS.
When the number of feedback samples is relatively large,
the forward and backward learning are almost the same
for RLS. This is because RLS continuously learns all the
samples, while LMS quickly adapts to the new example,
forgetting the older ones.

Table 4. Comparison between LMS in a linear model and TLMSP,
TLMSA in the adaptive tree similarity model

Precision
(percentage)

0 itera-
tions

1 iteration 2 iterations

Return LMS B 14.41 18.96 20.41
top 20 TLMSP 14.05 23.51 26.01

TLMSA 14.23 24.05 27.96

Return LMS B 7.25 11.87 13.04
top 100 TLMSP 7.35 13.54 16.44

TLMSA 7.28 14.71 18.61

Return LMS B 5.73 9.09 9.58
top 180 TLMSP 5.95 11.04 13.53

TLMSA 5.86 11.71 14.01

6.6.2 LMS vs. RLS vs. OPL vs. MARS vs. MindReader

Table 3 shows the comparison between MindReader (MR)
[10], MARS (MS) [26], OPL [24], and LMS with backward
learning and RLS with backward learning in a linear model.
When the return top is 20, 100, and 180, most similar images
are retrieved, and Fig. 8 shows their precision-recall curves
after two iterations of relevance feedback. Based on the table
and figure, the following observations can be made:

• When the number of returned images is small (e.g., return
top 20 images only), the performance of LMS and RLS
is significantly better than that of OPL MS and OPL MR.
This is because OPL MR and MS get suboptimal feature
weights in a linear model when there are not enough feed-
back samples (see Sect. 3). When the number of returned
images is sufficiently large (e.g., 180 images), the perfor-
mance of the algorithms (LMS, RLS, OPL) is comparable
because all three algorithms are close to the optimal solu-
tion conditioned on the feedback samples.

• The LMS with backward learning seems to be better than
RLS, OPL MS, and OPL MR in a linear model. Not only
is its retrieval performance the best, but its computation
complexity is also significantly cheaper than that of the
other approaches (see Sect. 4.5).

6.6.3 Adaptive tree model vs. linear similarity model

Let TLMSP denote a backward LMS filter to learn only pos-
itive samples by the tree model, TLMSA denote a backward
LMS filter to learn both positive and negative samples by the
tree model, and LMS B denote a backward LMS filter to learn
positive samples by a linear model. They all use the same back-
ward LMS filter to learn but are different in similarity models
and learning samples. Table 4 shows the comparison between
LMS B, TLMSP, and TLMSA algorithms. Figure 9 shows
their precision-recall curve after two iterations of relevance
feedback. The following observations can be made based on
Table 4 and Fig. 9:

• TLMSP and TLMSA with the tree similarity model learn
much better than LMS B with the linear model. This is
because the tree model is a more accurate nonlinear repre-
sentation of a user’s query concept and is able to find more
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Fig. 9. Comparison between LMS and TLMSP, TLMSA by different
similarity models

relevant images by multiple tree paths (subquery patterns).
Furthermore, because each path is better approximated as
a linear model, the adaptive filter works better in the clus-
tering feature subspace than in the whole nonlinear feature
space (e.g., in the LMS B case).

• TLMSA using both positive and negative feedback sam-
ples to learn is better than TLMSP using only positive
samples. The reason is that learning negative samples can
help the CBIR system to reject many obvious irrelevant
images and help the system decide which feature has more
discriminatory power than others. However, because there
are many patterns for irrelevant images, it is difficult to
find all the negative patterns by using just a few training
samples. Thus the improvement of TLMSA over TLMSP
is not very obvious.

7 Conclusions

Considering the human vision perception system as an intelli-
gent signal filter, we implemented the LMS and RLS adaptive-
filter-based feedback technologies to simulate the visual per-
ception model for CBIR. Both LMS and RLS filters learn
incrementally and support online adaptive learning with fast
convergence and good performance. Furthermore, we extend
the conventional linear adaptive filter to a nonlinear adaptive
tree similarity model in order to model the complex nonlinear
human visual perception. The proposed tree similarity model
is a hierarchical nonlinear Boolean representation of clustering
patterns of all feedback samples. It decomposes a user’s com-
plex query concept into a Boolean combination of multiple
simpler subconcepts that spans a smaller feature subspace and
can therefore be better learned by the linear adaptive filters. To
evaluate the performance of the proposed approach, we con-
ducted extensive tests on a large-scale heterogeneous image
collection and compared the results against the state-of-the-
art approaches. Experimental results show that the proposed
TLMSA approach (using a backward LMS filter to learn both
positive and negative samples in the adaptive tree similarity
model) is effective and efficient for CBIR.
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Appendix A: RLS algorithm for CBIR

For a finite time serial signal �X(n), we have

Rxx(n) =
∑n

i=1
π(i) �X(i) �XT (i)

�P (n) =
∑n

i=1
π(i) �X(i)d(i) (29)

Hence we have the following recursion for updating the co-
variance matrix and the crosscorrelation vector

Rxx(n) = Rxx(n − 1) + π(n) �X(n) �XT (n)
�P (n) = �P (n − 1) + π(n) �X(n)d(n) (30)

The matrix inversion lemma helps us to obtain the inversion
of the matrix Rxx. Let A, B, and F all be positive definite
matrices; the matrix inversion lemma says [27], if

A = B−1 + CF−1CT (31)

Then A−1 = B − BC(F + CT BC)−1CT B (32)

Because both R(n) and R(n − 1) are positive definite, let

A = R(n), B = R−1(n − 1),

C = �X(n), F = 1/π(n) . (33)

For convenience, let’s further define

Q(n) = R−1(n),
e(n) = d(n) − y(n) (34)

=
√

−2σ2 ln(π(n)) − WT (n − 1)X(n) .

By substituting Eqs. 33 and 34 into Eq. 32, we have

Q(n) = Q(n − 1) − �K(n) �XT (n)Q(n − 1) (35)

where

�K(n) =
Q(n − 1) �X(n)

[1/π(n) + �XT (n)Q(n − 1) �X(n)]
(36)

is called the gain vector. Rearranging the terms in Eq. 36, we
have

�K(n) = Q(n − 1) �X(n) − �K(n) �XT (n)Q(n − 1) �X(n)

= (Q(n − 1) − �K(n) �XT (n)Q(n − 1)) �X(n)

= Q(n) �X(n) (37)

To summarize, the recursive W (n) can be calculated as fol-
lows:

�W (n) = R−1
xx (n)�P (n)

= Q(n)�P (n) = Q(n)[�P (n − 1) + �X(n)d(n)]

= Q(n − 1)�P (n − 1)

− �K(n) �XT (n)Q(n − 1)�P (n − 1)

+Q(n) �X(n)d(n)

= �W (n − 1) + �K(n)(d(n) − �XT (n) �W (n − 1))

= �W (n − 1) + �K(n)e(n)
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